Calculation of Natural Frequencies of Bi-Layered Rotating Functionally Graded Cylindrical Shells

author

  • I Fakhari Golpayegani Department of Mechanical Engineering, Golpayegan University of Technology, Golpayegan, Iran
Abstract:

In this paper, an exact analytical solution for free vibration of rotating bi-layered cylindrical shell composed of two independent functionally graded layers was presented. The thicknesses of the shell layers were assumed to be equal and constant. The material properties of the constituents of bi-layered FGM cylindrical shell were graded in the thickness direction of the layers of the shell according to a volume fraction power-law distribution. In order to derive the equations of motion, the Sanders’ thin shell theory and Rayleigh-Ritz method were used. Also the results were extracted by considering Coriolis, centrifugal and initial hoop tension effects. Effects of rotating speed, geometrical parameters, and material distribution in the two functionally graded layers of the shell, circumferential and longitudinal wave number on the forward and backward natural frequencies were investigated. A comparison of the results was made with those available in the literature for the validity and accuracy of the present methodology.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A review of functionally graded thick cylindrical and conical shells

Thick shells have attracted much attention in recent years as intelligent and functional graded materials because of their unique properties. In this review paper, some critical issues and problems in the development of thick shells made from Functionally graded piezoelectric material (FGPM) are discussed. This review has been conducted on various types of methods which are available for thick ...

full text

Torsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation

In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...

full text

Nonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load

In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...

full text

Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton...

full text

Comparison of Various Shell Theories for Vibrating Functionally Graded Cylindrical Shells

The classical shell theory, first-order shear deformation theory, and third-order shear deformation theory are employed to study the natural frequencies of functionally graded cylindrical shells. The governing equations of motion describing the vibration behavior of functionally graded cylindrical shells are derived by Hamilton’s principle. Resulting equations are solved using the Navier-type s...

full text

Design of bidirectional functionally graded plate for optimal natural frequencies

An advantage of functionally graded materials (FGMs) over laminated composites is that material properties vary continuously in an FGM but are discontinuous across adjoining layers in laminated composites. Furthermore, in an FGM material, properties can be graded in all three directions which is more difficult to achieve in laminated composites. FGMs have been used for structural optimization, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  216- 231

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023